25 research outputs found

    Assessing Leaf Biomass of Agave sisalana Using Sentinel-2 Vegetation Indices

    Get PDF
    Biomass is a principal variable in crop monitoring and management and in assessing carbon cycling. Remote sensing combined with field measurements can be used to estimate biomass over large areas. This study assessed leaf biomass of Agave sisalana (sisal), a perennial crop whose leaves are grown for fibre production in tropical and subtropical regions. Furthermore, the residue from fibre production can be used to produce bioenergy through anaerobic digestion. First, biomass was estimated for 58 field plots using an allometric approach. Then, Sentinel-2 multispectral satellite imagery was used to model biomass in an 8851-ha plantation in semi-arid south-eastern Kenya. Generalised Additive Models were employed to explore how well biomass was explained by various spectral vegetation indices (VIs). The highest performance (explained deviance = 76%, RMSE = 5.15 Mg ha−1) was achieved with ratio and normalised difference VIs based on the green (R560), red-edge (R740 and R783), and near-infrared (R865) spectral bands. Heterogeneity of ground vegetation and resulting background effects seemed to limit model performance. The best performing VI (R740/R783) was used to predict plantation biomass that ranged from 0 to 46.7 Mg ha−1 (mean biomass 10.6 Mg ha−1). The modelling showed that multispectral data are suitable for assessing sisal leaf biomass at the plantation level and in individual blocks. Although these results demonstrate the value of Sentinel-2 red-edge bands at 20-m resolution, the difference from the best model based on green and near-infrared bands at 10-m resolution was rather small

    Band Ranking via Extended Coefficient of Variation for Hyperspectral Band Selection

    Get PDF
    Hundreds of narrow bands over a continuous spectral range make hyperspectral imagery rich in information about objects, while at the same time causing the neighboring bands to be highly correlated. Band selection is a technique that provides clear physical-meaning results for hyperspectral dimensional reduction, alleviating the difficulty for transferring and processing hyperspectral images caused by a property of hyperspectral images: large data volumes. In this study, a simple and efficient band ranking via extended coefficient of variation (BRECV) is proposed for unsupervised hyperspectral band selection. The naive idea of the BRECV algorithm is to select bands with relatively smaller means and lager standard deviations compared to their adjacent bands. To make this simple idea into an algorithm, and inspired by coefficient of variation (CV), we constructed an extended CV matrix for every three adjacent bands to study the changes of means and standard deviations, and accordingly propose a criterion to allocate values to each band for ranking. A derived unsupervised band selection based on the same idea while using entropy is also presented. Though the underlying idea is quite simple, and both cluster and optimization methods are not used, the BRECV method acquires qualitatively the same level of classification accuracy, compared with some state-of-the-art band selection methodsPeer reviewe

    Assessing Leaf Biomass of Agave sisalana Using Sentinel-2 Vegetation Indices

    Get PDF
    Biomass is a principal variable in crop monitoring and management and in assessing carbon cycling. Remote sensing combined with field measurements can be used to estimate biomass over large areas. This study assessed leaf biomass of Agave sisalana (sisal), a perennial crop whose leaves are grown for fibre production in tropical and subtropical regions. Furthermore, the residue from fibre production can be used to produce bioenergy through anaerobic digestion. First, biomass was estimated for 58 field plots using an allometric approach. Then, Sentinel-2 multispectral satellite imagery was used to model biomass in an 8851-ha plantation in semi-arid south-eastern Kenya. Generalised Additive Models were employed to explore how well biomass was explained by various spectral vegetation indices (VIs). The highest performance (explained deviance = 76%, RMSE = 5.15 Mg ha−1) was achieved with ratio and normalised difference VIs based on the green (R560), red-edge (R740 and R783), and near-infrared (R865) spectral bands. Heterogeneity of ground vegetation and resulting background effects seemed to limit model performance. The best performing VI (R740/R783) was used to predict plantation biomass that ranged from 0 to 46.7 Mg ha−1 (mean biomass 10.6 Mg ha−1). The modelling showed that multispectral data are suitable for assessing sisal leaf biomass at the plantation level and in individual blocks. Although these results demonstrate the value of Sentinel-2 red-edge bands at 20-m resolution, the difference from the best model based on green and near-infrared bands at 10-m resolution was rather small

    Spectral Temporal Information for Missing Data Reconstruction (STIMDR) of Landsat Reflectance Time Series

    Get PDF
    The number of Landsat time-series applications has grown substantially because of its approximately 50-year history and relatively high spatial resolution for observing long term changes in the Earth’s surface. However, missing observations (i.e., gaps) caused by clouds and cloud shadows, orbit and sensing geometry, and sensor issues have broadly limited the development of Landsat time-series applications. Due to the large area and temporal and spatial irregularity of time-series gaps, it is difficult to find an efficient and highly precise method to fill them. The Missing Observation Prediction based on Spectral-Temporal Metrics (MOPSTM) method has been proposed and delivered good performance in filling large-area gaps of single-date Landsat images. However, it can be less practical for a time series longer than one year due to the lack of mechanics that exclude dissimilar data in time series (e.g., different phenology or changes in land cover). To solve this problem, this study proposes a new gap-filling method, Spectral Temporal Information for Missing Data Reconstruction (STIMDR), and examines its performance in Landsat reflectance time series. Two groups of experiments, including 2000 × 2000 pixel Landsat single-date images and Landsat time series acquired from four sites (Kenya, Finland, Germany, and China), were performed to test the new method. We simulated artificial gaps to evaluate predicted pixel values with real observations. Quantitative and qualitative evaluations of gap-filled images through comparisons with other state-of-the-art methods confirmed the more robust and accurate performance of the proposed method. In addition, the proposed method was also able to fill gaps contaminated by extreme cloud cover for a period (e.g., winter in high-latitude areas). A down-stream task of random forest supervised classification through both gap-filled simulated datasets and the original valid datasets verified that STIMDR-generated products are relevant to the user community for land cover applications

    Do airborne laser scanning biomass prediction models benefit from Landsat time series, hyperspectral data or forest classification in tropical mosaic landscapes?

    Get PDF
    Airborne laser scanning (ALS) is considered as the most accurate remote sensing data for the predictive modelling of AGB. However, tropical landscapes experiencing land use changes are typically heterogeneous mosaics of various land cover types with high tree species richness and trees outside forests, making them challenging environments even for ALS. Therefore, combining ALS data with other remote sensing data, or stratification by land cover type could be particularly beneficial in terms of modelling accuracy in such landscapes. Our objective was to test if spectral-temporal metrics from the Landsat time series (LTS), simultaneously acquired hyperspectral (HS) data, or stratification to the forest and non-forest classes improves accuracy of the AGB modelling across an Afromontane landscape in Kenya. The combination of ALS and HS data improved the cross-validated RMSE from 51.5 Mg ha−1 (42.7%) to 47.7 Mg ha−1 (39.5%) in comparison to the use of ALS data only. Furthermore, the combination of ALS data with LTS and HS data improved accuracies of the models for the forest and non-forest classes, and the overall best results were achieved when using ALS and HS data with stratification (RMSE 40.0 Mg ha−1, 33.1%). We conclude that ALS data alone provides robust models for AGB mapping across tropical mosaic landscapes, even without stratification. However, ALS and HS data together, and additional forest classification for stratification, can improve modelling accuracy considerably in similar, tree species rich areas.Peer reviewe

    Primates on the farm - spatial patterns of human-wildlife conflict in forest-agricultural landscape mosaic in Taita Hills, Kenya

    Get PDF
    Human-wildlife conflict (HWC) is a growing concern for local communities living in the vicinity of protected areas. These conflicts commonly take place as attack by wild animals and crop-raiding events, among other forms. We studied crop-raiding patterns by non-human primates in forest-agricultural landscape mosaic in the Taita Hills, southeast Kenya. The study applies both qualitative and quantitative methods. Semi-structured questionnaire was used in the primary data collection from the households, and statistical tests were performed. We used applied geospatial methods to reveal spatial patterns of crop-raiding by primates and preventive actions by farmers. The results indicate most of the farms experienced crop-raiding on a weekly basis. Blue monkey (Cercopithecus mitis) was the worst crop-raiding species and could be found in habitats covered by different land use/land cover types. Vervet monkey (Chlorocebus pygerythrus) and galagos crop-raided farms in areas with abundant tree canopy cover. Only few baboons (Papio cynocephalus) were reported to raid crops in the area. Results also show that the closer a farm is to the forest boundary and the less neighbouring farms there are between the farm and the forest, the more vulnerable it is for crop-raiding by blue monkeys, but not by any other studied primate species. The study could not show that a specific type of food crop in a farm or type of land use/land cover inside the wildlife corridor between the farmland and the forest boundary explain households' vulnerability to crop-raiding by primates. Preventive actions against crop-raiding by farmers where taken all around the studied area in various forms. Most of the studied households rely on subsistence farming as their main livelihood and therefore crop-raiding by primates is a serious threat to their food security in the area.Peer reviewe

    Mapping Cropland Burned Area in Northeastern China by Integrating Landsat Time Series and Multi-Harmonic Model

    Get PDF
    Accurate cropland burned area estimation is crucial for air quality modeling and cropland management. However, current global burned area products have been primarily derived from coarse spatial resolution images which cannot fulfill the spatial requirement for fire monitoring at local levels. In addition, there is an overall lack of accurate cropland straw burning identification approaches at high temporal and spatial resolution. In this study, we propose a novel algorithm to capture burned area in croplands using dense Landsat time series image stacks. Cropland burning shows a short-term seasonal variation and a long-term dynamic trend, so a multi-harmonic model is applied to characterize fire dynamics in cropland areas. By assessing a time series of the Burned Area Index (BAI), our algorithm detects all potential burned areas in croplands. A land cover mask is used on the primary burned area map to remove false detections, and the spatial information with a moving window based on a majority vote is employed to further reduce salt-and-pepper noise and improve the mapping accuracy. Compared with the accuracy of 67.3% of MODIS products and that of 68.5% of Global Annual Burned Area Map (GABAM) products, a superior overall accuracy of 92.9% was obtained by our algorithm using Landsat time series and multi-harmonic model. Our approach represents a flexible and robust way of detecting straw burning in complex agriculture landscapes. In future studies, the effectiveness of combining different spectral indices and satellite images can be further investigated.Peer reviewe

    Land Cover Map for Multifunctional Landscapes of Taita Taveta County, Kenya, Based on Sentinel-1 Radar, Sentinel-2 Optical, and Topoclimatic Data

    Get PDF
    Taita Taveta County (TTC) is one of the world’s biodiversity hotspots in the highlands with some of the world’s megafaunas in the lowlands. Detailed mapping of the terrestrial ecosystem of the whole county is of global significance for biodiversity conservation. Here, we present a land cover map for 2020 based on satellite observations, a machine learning algorithm, and a reference database for accuracy assessment. For the land cover map production processing chain, temporal metrics from Sentinel-1 and Sentinel-2 (such as median, quantiles, and interquartile range), vegetation indices from Sentinel-2 (normalized difference vegetation index, tasseled cap greenness, and tasseled cap wetness), topographic metrics (elevation, slope, and aspect), and mean annual rainfall were used as predictors in the gradient tree boost classification model. Reference sample points which were collected in the field were used to guide the collection of additional reference sample points based on high spatial resolution imagery for training and validation of the model. The accuracy of the land cover map and uncertainty of area estimates at 95% confidence interval were assessed using sample-based statistical inference. The land cover map has an overall accuracy of 81 ± 2.3% and it is freely accessible for land use planners, conservation managers, and researchers

    Land Cover Map for Multifunctional Landscapes of Taita Taveta County, Kenya, Based on Sentinel-1 Radar, Sentinel-2 Optical, and Topoclimatic Data

    Get PDF
    Taita Taveta County (TTC) is one of the world’s biodiversity hotspots in the highlands with some of the world’s megafaunas in the lowlands. Detailed mapping of the terrestrial ecosystem of the whole county is of global significance for biodiversity conservation. Here, we present a land cover map for 2020 based on satellite observations, a machine learning algorithm, and a reference database for accuracy assessment. For the land cover map production processing chain, temporal metrics from Sentinel-1 and Sentinel-2 (such as median, quantiles, and interquartile range), vegetation indices from Sentinel-2 (normalized difference vegetation index, tasseled cap greenness, and tasseled cap wetness), topographic metrics (elevation, slope, and aspect), and mean annual rainfall were used as predictors in the gradient tree boost classification model. Reference sample points which were collected in the field were used to guide the collection of additional reference sample points based on high spatial resolution imagery for training and validation of the model. The accuracy of the land cover map and uncertainty of area estimates at 95% confidence interval were assessed using sample-based statistical inference. The land cover map has an overall accuracy of 81 ± 2.3% and it is freely accessible for land use planners, conservation managers, and researchers
    corecore